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1. INTRODUCTION 
 
Within the community of experts in A.C. corrosion of 
pipelines, the idea that the current density flowing through a 
holiday in the insulating coating is  a meaningful parameter 
able to assess the risk of corrosion is commonly accepted; in 
particular the value of 30 A/m2 is considered a threshold value 
that, if exceeded, leads, for sure, to corrosive effects for 
any type of soil [1]. 
On the other side, the assessment of corrosion conditions is 
only possible when the pipeline has already been laid down in 
the trench and the current density can be really measured on 
simulated holidays (usually having 1 mm2 bare surface). These 
measurements in the field are affected by a possible wide 
variation of the spread resistance of these simulated 
holidays, which is connected to complex and not yet completely 
understood electrochemical reactions deriving from d.c. and 
a.c. current effects and the chemical composition of the soil 
contacting the bare steel. It has been demonstrated by 
laboratory tests that this spread resistance may, during time, 
increase by as much as 100 times or decrease by as much 60 
times (formation of particular layers at the phase boundary). 
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From this point of view, at the design stage of new plants 
(pipelines from one side and power or railway lines on the 
other) the only possible approach to the problem is 
represented by simulation tools able to assess the level of 
current density exchanged between pipe and soil through the 
insulating coating holidays. 
The algorithms on which such simulation tools are based, are 
essentially the same used to predict the electromagnetic 
interference (i.e. induced voltages and currents) on pipelines 
and telecommunication lines by A.C. power and electrified 
railway lines [2], [3]; thus, from this point of view, the 
A.C. corrosion can be considered as a particular problem 
inside the wider set of the power frequency Electromagnetic 
Compatibility problems. 
 
2. DETERMINISTIC APPROACH VERSUS PROBABILISTIC APPROACH 
 
In [4] some examples of calculations of current density, based 
on real situations, are presented; the approach there followed 
is purely deterministic, i.e. it is based on specific 
assumptions concerning the holiday size and location. Such an 
approach, focused on the worst case study, is, without any 
doubt, useful from the cautionary point of view but, in our 
opinion, it should be completed by a probabilistic approach 
which takes into account of the random nature of some 
significant parameters like the holidays size and location. 
Therefore, the main purpose of this work, is to describe an 
algorithm for the assessment of the probability associated to 
the exceeding of a certain current density value in a generic 
section of pipeline; the advantage of such an approach is the 
possibility to individuate those pipeline sections which are 
more exposed to the A.C. corrosion risk. 
Strictly speaking, we have to mention that the algorithm 
object of this work is still deterministic as far as the 
calculation of electric quantities (voltage, current, current 
density) is concerned while it is statistic as far as the 
holidays data are concerned; the consequence of such an 
approach is that the results of the algorithm are given in 
terms of probability of exceeding a certain value of current 
density for a generic section, of given length, along the 
pipeline. Here we shall describe only the probabilistic 
aspects and we refer to [2], [3] and [4]  for all the other 
aspects. 
 
3. LIMIT VALUE FOR THE HOLIDAY AREA 
 
Before entering into details of the algorithm, it is necessary 
to recall some concepts relevant to the resistance Rh with 
respect to remote earth of an holiday in the pipeline coating; 
Fig.1 may help in illustrating such concepts. 
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Let us consider a buried pipeline covered by a coating having 
thickness d; moreover, let us suppose that a single holiday is 
present on the coating at a given location of the pipeline. 
The holiday is represented by a small cylindrical vacancy of 
the coating, filled with soil, and having cross section A and 
same height d as the coating thickness. Moreover, due to the 
electrochemical reactions occurring at the holiday location 
between the steel of the pipe and soil, the value of the soil 
resistivity measured in points very close to the holidays is 
very different with respect to the value of the soil 
resistivity measured at a certain distance from the pipeline; 
this is also confirmed by field measurements [5]. For such a 
reason, we shall consider two different values of resistivity: 
ρh for points inside the holiday and ρs in all the other 
points1. 
 
 

          

                                                 
1 On the basis of the results in [5] we have in first approximation that ρh ≈ 
ρs /10 . 
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Fig.1: Holiday resistance to remote earth 
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The resistance to remote earth Rh of the pipeline through the 
holiday is given by the sum of two contributions; the first 
one, indicated by Rch , and representing the resistance 
relevant to the small cylinder inside the coating, is given 
by: 

R
d

Ach
h=

ρ
                               (1)          

 
The second one, indicated by Reh , represents the earth 
resistance (with respect to the remote earth) of the holiday; 
it can be evaluated as the earth resistance of a disk of area 
A, placed on the soil surface [2], that is: 
 

R
Aeh

s=
ρ π
4

                             (2)          

 
Therefore, by adopting the term holiday resistance  to 
indicate the quantity Rh, we have: 
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It is useful to remark that in corrosion books and papers, Rh 
is generally named spread resistance. 
Thus, if the pipe under the electromagnetic influence of a 
power or of an electrified railway line assumes a voltage2 V at 
the holiday location, the current density J exchanged between 
pipe and soil through the holiday itself is given by: 
 

Ad

V
AR
VJ

s
h

h π
ρ

ρ
4

+
==                         (4)          

 
Let J* be the limit value for the current density adopted to 
quantify the A.C. corrosion risk (e.g. J*=30A/m2); from (4) we 
can get, for a given voltage V, the maximum value of the 
holiday area A*=A*(V) for which we may have a current density 
J≥J*; in fact the following inequality must hold: 
 







 −≤ d
J
VA h

s

ρ
ρ

π *

4
                       (5)          

 
At the same time, in order that formula (5) has physical 
meaning, it must be: 
 

dJV hρ*>                             (6)          
 
Formula (6) means that in all the pipeline route regions 
satisfying the inequality V≤J*ρhd, the limit value J* for the 
current density can never be exceeded independently on the 
value of the holiday area A. 
On the contrary, provided that formula (6) is verified, from 
(5) we can deduce that: 
 

( )
2

*2
* 16


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J
VVA h

s

ρ
πρ

                     (7)          

 
So formula (7) establishes an upper limit (in function of the 
pipe voltage V) for the holiday area A in order to have the 
exceeding of the limit value J* for the current density through 
the holiday itself. We shall name A*(V) limit area. 
 
4. PROBABILISTIC APPROACH 
 
4.1 Random characteristics of holidays coating 

                                                 
2 Here and in the following, the voltage V is always considered in modulus. 

 5 



 
The main purpose of this paragraph is to describe the random 
characteristics of the holidays by means of suitable random 
variables and their relevant probability distributions. 
As already remarked, the random characteristics of the holiday 
are inherent to: 
 
• their location3 along the pipeline route; 
 
• their size. 
 
As far as the holidays location is concerned, it is reasonable 
to assume that, for homogeneous kinds of soil and of pipeline 
(i.e. having the same diameter and the same type of coating), 
the holidays are uniformly distributed along the pipeline; 
from this point of view the main parameter which has to be 
known is the number of holidays per unit length nh.  
As far as the holidays size is concerned, we have verified, on 
the basis of data collected from field measurements, that its 
distribution is sufficiently well fitted by a log-normal 
distribution characterized by  parameters µ and σ  deduced from 
the population {Ai} of the holidays area  composed by NA 
elements (Ai i=1,2,…NA). Such parameters are calculated 
according to the formulas: 
 

(∑
=

=
AN

i
i

A

A
N 1

ln1µ )                         (8)          

 

( )( )∑
=

−=
AN

i
i

A

A
N 1
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Some information about the log-normal distribution and the 
numerical values for the parameters nh , µ and σ which have 
been deduced from field data  are reported in the Appendix. 
By using these information, we shall deduce in the following 
the probability that the generic section [s', s''] along the 
pipeline route, characterized by a mean voltage V, contains  
at least one holiday with area A≤A*(V) so that the current 
density J exceeds the limit J*.   
 
4.2  Probability of having k out of N holidays in the section 

[s', s''] 
 

                                                 
3 The location of a generic point along the pipeline route is identified by 
means of a coordinate s with 0 ≤ s ≤ L being L the pipeline length. 
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Let us consider a pipeline having a number of holidays per 
unit length nh and length L. The total number of holidays Nh 
relevant to its coating is given by: 
 

( LnroundN hh = )                       (10)          
 
being round the function approximating the numeric value nhL to 
its nearest integer. 
Starting from the hypothesis that the holidays are uniformly 
distributed along the pipeline route, we have that the 
probability p(s', s'') of having one holiday in the section 
[s', s''] is given by: 

 

( )
L
ssssp
′−′′

=′′′,                        (11)          

 
while the probability q(s', s'') of having no holidays inside 
the same section is: 
 

( ) ( ssqssq ′′′−=′′′ ,1, )                     (12)          
  
By considering that the total number of holidays relevant to 
the whole plant is Nh we have to consider all the possible 
events represented in Table I. 
 

Table I: Partitioning of Nh holidays inside and outside a 
generic section [s', s''] along the pipeline route. 

 
number of holidays inside 

section [s', s''] 
number of holidays outside 

section [s', s''] 
0 Nh 
1 Nh-1 
2 Nh-2 
M M 

Nh-1 1 
Nh 0 

 
So, by the help of Table I and remembering the definition of 
binomial distribution [6], we have that the probability P(k, 
Nh, [s', s'']) of having k out of Nh holidays in the section 
[s', s''] is: 
 

[ ]( ) ( ) ( ) kNkh
h

hssqssp
k
N

ssNkP −








=′′′ '',''',',,,              (13)          

 
4.3 Probability of having m out of k holidays inside the 
section [s', s''] with A≤A*(V) 
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As before mentioned, let us assume that the random variable A 
is distributed according to the log-normal distribution 
characterized by the parameters µ and σ; let us consider a 
section [s', s''] along the pipeline route characterized by 
mean value V for the induced voltage. Under such a condition, 
we can calculate the probabilities pA(V) and qA(V) defined as:           
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The complementary quantity qA(V) is given by: 
 

( ) ( )VpVq AA −= 1                             (15) 
 

If in the section [s', s''] are present k holidays, we are 
interested in determining the probability that m out of k 
holidays have area A≤A*(V). 
All the possible events are shown in Table II. 
 
Table II: Partitioning of k holidays inside a generic section 

[s', s''] along the pipeline route with A≤A*(V). 
 

number of holidays inside 
section [s', s''] having A≤A*(V) 

number of holidays inside 
section [s', s''] having 

A≥A*(V) 
0 k 
1 k-1 
2 k-2 
M M 

k-1 1 
k 0 

 
Also in this case by the aid of Table II and by remembering 
the binomial distribution, we have that the probability PA(m, 
k, A*(V)) of having m out of k holidays, inside [s', s''], with 
area A≤A*(V) is given by: 
 

( )( ) ( ) ( ) mk
A

m
AA VqVp

m
k
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



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


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4.4 Probability of having at least one holiday with A≤A*(V)   

  
If we make the reasonable assumption that the random 
quantities represented by the number of holidays inside [s', 
s''] and by the holidays area A are independent, we can 
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calculate the probability P([s', s''], V) of having at least 
one holiday, with A≤A*(V), inside the section [s', s''], 
characterized by a mean voltage V; in such a way, for at least 
one holiday, the current density J exceeds the limit J*. By 
taking into account of formulas (6), (13) and (16), the 
probability P([s', s''], V) is given by: 
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(17) 

 
From the computational point of view, it is much faster to 
calculate the complementary quantity Q([s', s''], V) which is 
the probability of having no holidays inside [s', s''] with 
A≤A*(V). 
Q([s', s''], V) is calculated by means of the following 
expression: 
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Thus, P([s', s''], V) can also be evaluated through the 
relation: 
 

[ ]( ) [ ]( VssQVssP ,,1,, ′′′−=′′′ )                      (19)          
 
We would like to remark that such formulas are based on the 
mean value V of the induced voltage inside the section [s', 
s'']; from this point of view, when the voltage presents large 
variation with respect to the abscissa s along the pipeline, 
it is necessary to subdivide it by using sections of suitable 
length so that the mean value V is not too much different from 
the minimum and maximum values assumed by the voltage in the 
same section.
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5. EXAMPLE OF APPLICATION OF THE ALGORITHM 
 
5.1 Data and results of the calculation 
 
From the previous paragraphs it is clear that the probability 
of exceeding a certain value for the current density is mainly 
related to two important quantities: 
 
• the length of the pipeline section considered (i.e. the 

longer is the section, the higher is the probability); 
 
• the mean value of the voltage assumed by the pipeline in 

the same section (i. e. the higher is the mean voltage the 
higher is the probability). 

 
On the basis of these considerations, it is useful, from the 
practical point of view, to have at disposal a certain set of 
curves relating the probability of exceeding the limit value 
of current density J* versus the pipeline section length Λ for 
a given value of the mean voltage V.  
In Fig.2 an example is shown by considering a limit value of 
J*=30A/m2.                                                                                                                                                   
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Fig.2: Per cent probability of exceeding the current density 
limit J*=30A/m2 versus the pipeline section  length Λ for 
different values of the mean voltage; the curves from top to 
bottom correspond to V= 60, 50, 40, 30, 20, 10V respectively; 
nh=0.7 holidays/km. 
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Other data relevant to this example are: nh=0.7 holidays/km, 
ρh=10Ωm, ρ=100Ωm L=28.5km, d=3mm; from these data, one can 
also derive from formula (6) that the minimum value of V able 
to produce the exceeding of the limit J*= 30A/m2 is 0.9V. 
Moreover, from formula (10), we have that the total number of 
holidays present on the pipeline coating is N=20. 
In Fig.3, the same probability curves as in Fig.2 are shown 
with the only difference that nh=1.4 holydays/km so that Nh=40 
number of holydays. 
 

 
Fig.3: Per cent probability of exceeding the current density 
limit J*=30A/m2 versus the pipeline section length Λ for 
different values of the mean voltage; the curves from top to 
bottom correspond V= 60, 50, 40, 30, 20, 10V respectively; 
nh=1.4 holidays/km. 
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5.2 Practical use of the probabilistic graphs  
 
How can the information contained in a graphic similar to the 
ones shown in Fig.2 and Fig.3 be used ?  
The following procedure shows the main steps: 
 
1. calculation of the interference voltage values: i.e. 

determination of the voltage profile V=V(s) along the 
pipeline; 

 
2. individuation of the section(s) of interest along the 

pipeline (e.g. the section(s) characterized by the highest 
level of induced voltage); 
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3. determination of the mean voltage(s) relevant to that 
(those) section(s); 

 
4. determination of the probability of exceeding the limit J* 

inside the section by means of graphics similar to Fig.2; 
alternatively formulas (17) or (19) can be directly used for 
a more precise calculation. 

 
In Fig.4 an example of voltage profile induced along a 
pipeline by a 380kV-50Hz power line carrying balanced currents 
of  630A is shown. 
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Fig.4 Example of voltage profile induced along a pipeline by a 
nearby 380kV-50Hz power line. 
 
Let us suppose we are interested in calculating the 
probability of exceeding the limit J*=30A/m2 in the section 
[9km, 10km](the region containing the highest peak) along the 
pipeline route which is characterized by a mean value of 
voltage V of nearly 50V. From the graphic in Fig.2 and Fig.3 
we can estimate a probability of about 46% and 71% 
respectively. Similarly, if we consider the section [19km, 
20km](the region containing the second peak) characterized by 
a mean voltage of nearly 25V we obtain a probability of about 
32% and 53% respectively. 
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6. CONCLUSIONS 
 
In the frame of the A.C. corrosion problem produced on buried 
pipelines under the electromagnetic influence of power or 
electrified railway lines, we have presented a method for 
estimating the probability of exceeding a certain threshold J* 
for the induced current density for at least one holiday in 
the insulating coating and located in a generic region of the 
pipeline between the abscissas s' and s''. 
The method consists in the integration of deterministic 
calculations, necessary for the determination of the induced 
voltage profile along the pipeline route, with probabilistic 
calculations necessary for the determination of the holidays 
size and consequently of the current density. 
The parameters and the characteristics relevant to the random 
quantities (i.e. the holidays area distribution, the number of 
holidays per unit length) have been inferred starting from 
experimental data coming from the field. 
As one could expect the probability levels are directly 
related to: 
 
• the levels of induced voltage on the pipeline; 
 
• the number of holidays per unit length besides the other 

statistical characteristics of the holidays distribution; 
 
• the length of the pipeline section considered. 
 
In our opinion such a calculation method can be used as 
previsional tool able to quantify the risk of A.C. corrosion 
pipelines exposed to the electromagnetic influence of a 
power/electrified railway line both at the design stage and at 
the normal operating stage; we emphasize that at the design 
stage, when measurements are of course not possible, this is 
the only tool at our disposal in order to assess the A.C. 
corrosion risk. 
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APPENDIX: STATISTICAL CHARACTERISTICS OF  COATING HOLIDAYS 
 
A.1 INTRODUCTION 
 
This Appendix is devoted to the statistical description of the 
holidays characteristics coming from the field thanks to the 
pluri-annual experience  of SNAM RETE GAS. 
No coating exists without holidays. These are often due to 
backfilling operation during the pipe-laying phase. 
For this reason, after the pipe-laying phase, a coating fault 
location is performed over the entire pipeline. 
According to Italy’s and most of the European Gas Companies 
practice, any coating fault detected is repaired at the 
Contractor’s expences. 
Two are the main aspects that, according to the model 
previously described, are necessary to be focused: 
 
• the number of holidays per unit length; 
 
• the statistical distribution of the holidays area. 
 
It is important to notice  that, due to the fact when holidays 
are detected they are almost always repaired, the data 
herebelow reported are in principle, only valid at the stage 
just after the pipeline laying phase installation; 
nevertheless not all the holidays can generally be detected; 
thus the data and the product of their processing can be still 
used so obtaining results which can be considered cautionary. 
 
A.2 NUMBER OF HOLIDAYS PER UNIT LENGTH 
 
In Table A1, the total number of holidays detected on various  
pipelines having different diameter are shown; from the 
knowledge of the total length it is possible to calculate the 
global number of holidays per unit length nh. 
 

Table A1: number of holidays detected on pipelines having 
different diameters 

 

diameter [mm] M: number of 
holidays 

L: total length 
[km] 

nh=M/L: 
number of 
holidays 
per km 

100 37 66 0.561 
150 92 74.8 1.23 
200 115 160.5 0.717 
250 107 185.4 0.577 
300 199 165.1 1.205 
400 145 267.1 0.543 
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500 143 129.3 1.106 
600 94 108.9 0.863 
750 33 150.6 0.219 
850 7 14.2 0.493 
900 39 178 0.219 
1000 7 47 0.149 
1200 455 376.6 1.208 
Total 1473 1923 0.766 

 
The last row of Table A1 contains the values referred to the 
whole population with no relation to the pipe diameter. 
 
A.3 STATISTICAL DISTRIBUTION OF THE HOLIDAYS SIZE 
 
A.3.1 Determination of the probability density  
 
As far as the holidays size is concerned, we have at disposal 
a population {Ai} composed by NA=100 elements (Ai i=1,2,…NA) 
being each element contained in the interval [0.1cm2, 320cm2]. 
For the detailed distribution see Table A2. 
 

Table A2: Detailed distribution of holidays size 
 

holiday area size [cm2] number of holidays 
0.1 1 
0.5 3 
0.8 2 
1 21 

1.5 3 
2 17 

2.5 2 
3 10 
4 3 

4.3 1 
5 4 
6 2 
7 3 
8 4 
9 1 
10 3 
12 2 
15 6 
20 1 
24 1 
30 2 
40 2 
50 1 
60 1 
100 1 
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120 1 
300 1 
320 1 
total 100 

 
On the basis of data reported in Table A2, the following 
histogram of the relative frequencies applies 4: 
 

 

0.1 1 10 100 1 .1030

0.15

0.3

A [cm2]

Fig.A1: Histogram of the relative frequencies and conjectured 
log-normal distribution 

 
Our purpose is to infer an analytical density distribution 
able to fit, sufficiently well, the histogram of the relative 
frequencies. 
A possible conjecture is the log-normal distribution whose 
probability density is given by: 
 

( )
( )

2

2ln
2
1

2
1 σ

µ

πσ

−
−

=
A

e
A

Ay                       (A.1)          

 
being A the random variable representing the holiday area 
while µ and σ2 are the mean value and variance of the random 
variable ln(A) respectively. In practice we have the log-
normal distribution for the random variable A when its natural 
logarithm is distributed according the normal law. 
The next step is the determination of the parameters µ and σ2 
characterizing the log-normal distribution of formula (A.1). 
They can be calculated by using the so called maximum 
likelihood method (see [6], [7]); according to it we obtain 
for µ and σ2 the following expressions: 

                                                 
4 In order to obtain the histogram shown in Fig. A.1, the following 
partition of the interval [0.1, 320] has been choosen: [0, 1.001, 2.001, 
4.001, 7.001, 10.001, 15.001, 50.001, 320.001] 
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From formulas (A.2) and (A.3) and by using the values of the 
population {Ai}, we obtain the following values µ=-7.907 and 
σ=1.419 yielding the dashed curve in Fig.A.1; nevertheless a 
better fit can be achieved is we use the guessed value µ=-8.207 
obtaining the continuous line curve in Fig.A.1. Thus, in our 
work, we refer to this latter value. 
 
A.3.2 Goodness of fit tests 
 
In previous paragraph we have made a conjecture concerning the 
probability density distributions of the holidays area size; 
nevertheless, in order to decide if our hypothesis is good or 
not we have to make a statistical test of goodness of fit in 
order to reject or not  this conjecture. 
To this purpose, we used two different tests: 
 
• the χ2 test; 
 
• the Kolmogorov-Smirnov test. 
 
We again refer to [6] and [7] for some information about these 
two tests. We only report here, that according to the results 
of both tests (considering a level of significance5 α=0.05), it 
is not possible to reject the hypothesis that the probability 
density distribution of the holidays area size is sufficiently 
well described by a log-normal curve. 
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