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Abstract. The identification of a powerful inspection procedure for buried pipeline is 
still a relevant problem in industrial field. Several research activities are therefore 
focused to optimize new online monitoring technologies specifically for pipeline 
industry. Unfortunately the current available methods can’t properly meet the 
minimum requirement of industrial users. Acoustic emission is a technique that has 
shown significant potential in this research area. However, many studies give only a 
qualitative analysis of AE parameters and their distributions, making difficult to 
propose any automatic non-supervised scheme for the real-time in situ assessment 
of damage. In this way the information necessary to identify and classify the damage 
mechanisms that occur during operational conditions could not be sufficient. This 
paper aims to highlight how the use of multivariable analysis techniques of AE data 
could be useful in the study of evolution and of the extent of damage in pipelines 
structures. Unsupervised (k-means method) and Self Organizing Map have been 
used as analytical instruments. 
 
Introduction 
The identification of a powerful inspection procedure for buried pipeline is still a 
relevant problem in industrial field. Several research activities have been focused to 
identify new online NDT monitoring technologies specifically for pipeline industry. 
Unfortunately all current methods can not properly meet the minimum requirement of 
industrial users.  
Acoustic emission (AE) is a technique that has shown significant potentiality in this 
research area [1-3]. The AE technique is sensitive to the elastic energy 
spontaneously released when the materials undergo deformation, transformation, or 
fracture. The AE signals are generated during both activation or propagation of the 
degradation mechanism. Consequently the AE could be used as a useful tool able to 
offer a real-time monitoring of damage processes in various kind of structures under 
load/environmental conditions [4]. Several works in the literature evidences how this 
technique is widely used for leak detection in pipelines industry [5-6] or to obtain 
information about the flow of particulate solids within the pipelines [7]. But what it is 
more interesting is that AE technique can give the opportunity to identify both internal 
and external cracks/defects on a structure [8], e.g. cracks induced by HIC [9] or by 
corrosion fatigue [10]. In a pipeline the AE can be generated by several types of fault 
conditions such as localized fluid-mechanical disturbances, local impingement, 
erosion, growing fatigue cracks or crack face rubbing, external impacts and leaks. 
Each damage phenomenon has its specific acoustic wave form identifiable by 
specific characteristics. Nevertheless, many studies give only a qualitative analysis of 
AE parameters and their distributions, making difficult to propose any automatic non-
supervised scheme for the real-time in situ assessment of damage. In this way the 
information to identify and classify the damage mechanisms that occur during 
operational conditions could not be sufficient.  



This paper aims to highlight how the use of multi-variable analysis techniques of AE 
data can be useful in the study of evolution and the extent of damage in pipelines 
structures. Unsupervised (k-means method) and Self Organizing Map have been 
used as analytical instruments.  
In particular the dimension reduction of large data sets was obtained by means of the 
Principal Component Analysis (PCA) which is a classical method of multivariate 
statistics [11]. Kohonen's Self-Organizing Map (SOM) procedure also have been 
successfully adopted to separate numerically different classes of data [12].  
This methodology has in fact proved particularly powerful in identifying, using 
exemplified topological maps, the evolution and extent of damage of a monitored 
structure. In this way it is possible to relate each acoustic stage, with unambiguous 
significant variables, to a specific degradation phase.  
 
Clustering procedures for AE signals  
When large datasets of AE signals are collected signals are commonly reduced to a 
numbers of patterns describing the signal themselves. With the purpose to better 
identify the AE  events a pattern classification in three main groups can be adopted:  

• Common variables: amplitude, counts, duration, rise-time and energy patterns 
that are calculated by the acquisition system from the input raw AE wave. 

• Uncommon variables: they are statistical patterns calculated on the AE hits 
population such as historic index, severity, RA value and average frequency.  

• Set-up variables: this group included variables such as time, sensor 
identification and external variables such as loading condition and so on.  

A multi-step procedure able to identify homogeneous clusters of AE signals to be 
related to specific damage conditions (e.g. tensile crack, or shear cracks, micro 
cracking or macro-cracking) on the basis of the adoption of the variables dataset can 
than be adopted. A hardware filtering of the data should be performed at the level of 
data recording in order to cut off low amplitude noise by means of a high pass filter. 
Afterwards to analyze the acquired data the suggested procedure include the 
following steps: 
 

• Clustering noise removal 
• Univariate statistical analysis 
• Principal Component Analysis (PCA) 
• Self Organising Map (SOM) 
• Damage Analysis 

 
A scheme of clustering methodology is reported in Figure 1.  
 
Noise removal 
At first, when a large database is acquired for long time, it could be useful to apply a 
seasonality denoising procedure. In this way it is possible discriminate if during 
specific time intervals (hour, days, seasons..) anomalous events that perturbs  
population data are recorded. In Figure 2 the contour plot of two AE variables (rise-
time and events frequency) as function of day and hours are represented. These 
graphs are usually used to represent equipotential curves. The different colour 
regions indicate variables magnitude (right side colour scale).  



Figure 1. Scheme of the procedure for noise removal and data clustering  
 
 
Periodic yellow-red colored area on this maps indicate the presence of potential 
spurious acoustic events. In the reported example [13] the distribution of AE rise-time 
shows that high values are periodically present in two different specific time span in 
the range of seven and nineteen o'clock. It can be therefore argued that these events 
could be probably related with artificial events related to the surrounding environment 
(external noise). The first step of noise filtering process have therefore to consider 
the removal  of all events present in this time sequence.  

Figure 2. Seasonality denoising procedure: variables classification on the data matrix 
[13]  
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Afterwards a further noise removal step can be performed to remove “noisy” cluster. 
That is, for example, try to remove AE signals when a high number of spurious 
events were recorded only on daylight time, e.g. cluster including an extremely high 
number of daylight events (97-98%). Then  a PCA analysis and clustering validation 
can be  iteratively performed until no more clusters including a high number of 
daylight events  can be observed. The so filtered data can be finally used as input for 
univariate and multivariate statistical analysis. 
 
Univariate Statistical Analysis 
With the purpose  to evaluate the evolution of the acoustic activity during time a plot 
that relate the cumulative counts versus acquisition time could be used as reported in 
Figure 3 (the figure is related to AE events collected on a stainless steel bar during 
SCC test in a magnesium chloride solution [14]). In this case by analyzing the shape 
of the curve four significant stages, related to specific phases in the damage 
evolution in the steel sample, can be identified. 

Figure 3. Cumulative counts plot versus time [14] 
 
Stage I: In the early stages of the SCC test (until about 10 minutes) a limited acoustic 
activity of low intensity has been detected. Acquired acoustic signals were due to the 
initial electrochemical interaction between the steel sample and the electrolyte 
solution.  
Stage II: After the incubation period, some local corrosion mechanism, e.g. pits, 
could occur on the metal surface. The pit phenomenon is still not energetically 
detectable but can induce more relevant SCC mechanism [15]. The crack initiation is 
followed by short crack propagation, identified with AE at higher amplitude. This 
behavior is confirmed by the progressive increase of the cumulative counts, related 
with the activation and propagation of large amount of cracks. 
Stage III: After long time there is a quiescent phase where acoustic events become 
sporadic and energetically with low intensity. In the quiescent phase the time period 
between two AE events increases significantly. This phenomenon could be related 
with the formation of a plastic zone at the ahead of the crack during the crack 
propagation [16]. Increasing the crack size, an intensification of the stress level was 



observed, which induces a larger plastic zone ahead of the crack tips. This results in 
a greater blunting of the crack tip. Larger plastic zone implies that a longer time is 
needed for crack to resharpen by dissolution for a new further crack propagation. The 
period of time between two AE events corresponds to the period of material 
dissolution that induced the crack growth. This could explain the larger time gaps 
between two AE events during later stages of crack growth.  
Stage IV: In this phase the SCC induces progressively a mechanical instability on the 
wire, until the final fracture of the sample was observed.  
 
Multivariate Statistical Analysis 
The Kohonen's self-organizing map (SOM) algorithm [12] can be then useful applied. 
The SOM analysis related to the SCC damage mechanisms previously described  
was summarized in the the U-matrix map reported in Figure 4 [14].  
 

Figure 4.  U-matrix resulting from the application of the Kohonen self-organizing map 
algorithm [14] 
 
This map shows distances from maps units (a unity of data cluster related to “similar” 
events) and their nearest neighborhood, evaluated by Euclidean method. High values 
of U-matrix map (red and yellow pixels) identify large distances between neighboring 
map units. Therefore uniform areas of low value (blue pixels) group together 
elements belonging to the same cluster. In this specific case, we identified many 
relevant discriminated areas related with a specific cluster. It is interesting to note 
that using the topological maps of the variables (reported in Figure 5) it should be 
possible, on the basis of variable magnitude distribution, to relate data cluster to local 
area of specific variables. In particular, we defined three regions on the U-matrix 
map. The definition of the area associated to the first region is heavy influenced by 
the event frequency distribution as can be observed in the topological map (Figure 
5).  
In fact the events characterized by high event frequency (red and yellow pixels in the 
event frequency topological map) are grouped in the bottom-right corner of the map. 
A second region can be identified in a large area located in the middle of the U-matrix 
map. Here some sub-cluster are identifiable. In particular AE with high rise-time and 
low average frequency are grouped on the bottom-left of the map. At the same time a 
second cluster identified by low RA and medium event frequency is located on the 
right of the map. Furthermore on the top-left of the map a third cluster is related to 



low energetic acoustic events. A large region, located on the center of the map, is 
heavily influenced by rise-time. Finally on top right corner are grouped all events with 
high amplitude. A third region, related with the quiescence phase, is located on the 
left of the U-matrix map.  

Figure 5. Topological maps of the uncorrelated variables as resulted from the 
application of Kohonen's self organizing map algorithm [14]. 
 
Damage analysis 
The ratio between rise-time and amplitude (defined as RA value) can be considered 
as a relevant parameter to define a specific acoustic emission. Each crack 
propagation mode can be related with a specific waveform. In this way, on damage 
analysis procedure, the RA value could be used as a discriminant parameter to 
identify tensile and shear crack propagation [17-18]. Low RA value are usually related 
with a tensile crack propagation [19]. In fact, when the crack propagates in 
accordance with the mode I (tensile mode), the walls of the crack are moving away 
one each another, resulting in a transient change in volume of the material. In this 
case most of the energy generated is transmitted in the form of a longitudinal wave. 
There will be a small amount of shear waveform, which will propagate with a lower 
speed. Consequently, the large part of the energy is released in the first phase of the 
wave generation (Figure 6 top images), where the waveform is characterized by a 
small value of rise-time and high amplitude. 
Instead, when the crack propagates according to the mode II (shear mode) it has a 
relative sliding between the walls of the crack, consequently there is only a shape  
variation of the material (the volume remains unmodified). In this case the shear 
wave energy contribution becomes significant compared to the longitudinal 
contribution longitudinal determining a high rise-time and therefore high value of the 
parameter RA (Figure 5 lower images) [20]. 
 



Figure 6. Relation between crack propagation mode and AE waveform RA parameter [20]. 
 
At this point it could be intriguing to relate the damage evolution of the sample due to 
the corrosive conditions imposed by the test set-up to the above mentioned 
outcomes. On the basis of the above reported considerations it may be possible to 
divide the U-matrix map into specific damage mechanism areas, according to the 
schematic representation shown in Figure 7, in which we can distinguish the 
activation, propagation and quiescence, respectively related to areas I, II and III. A 
specific section was underlined to identify the failure damage area. Where possible, 
the section II was divided in sub-cluster with the purpose to evidence the evolution of 
the crack propagation mode during the SCC test.  
 

Figure 7.  Damage detection mechanism areas as identified by SOM  [14] 
 



Such procedure can be applied also to multiple configuration and try to identify the 
specific differences related to different damage mechanisms. The Figure 8 [21] 
evidences the applicability of SOM analysis to large dataset constituted by a different 
test conditions. By this way, this procedure could be used to evaluate simultaneously 
AE database of different failure events recorded during in-situ monitoring, giving a 
support in the identification of stability or potential instability of a structure. 
 

Figure 8. Partial and global SOM with topological maps of the variables for four 
different SCC test conditions applied on stainless steel bars [21]  
 
Conclusions 
The use of multivariable analysis techniques of AE data was suggested as a useful 
tool to evaluated corrosion mechanism and  damage extension in buried pipelines.  
Some example of the application of cluster analysis procedures to identify cracking 
mechanisms in steel components have been reported. Two different clustering 
procedures based on the adoption k-means algorithm as well as Principal 
Component Analysis and Self Organizing Map algorithms have been proposed. A 
procedure based on cluster analysis was developed to remove AE noise signal. 
Results obtained are highly promising for industrial applications (chemical, 
petrochemical, civil, etc…) were large database are usually necessary to verify or 
forecast the stability/ integrity of a structure. Further improvements of the algorithms 
and the development of a validation procedure are however still necessary for 
practical application. 
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